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Flow reconstruction from sparse sensors




Imperial College
London

Introduction and Motivation

@ Multi-geometry FR models not as simple as adding data from multiple flow cases
to your dataset
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@ Model shouldn’t have to guess the shape of the immersed object
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Schwarz-Christoffel Mappings
@ Idea: Map all fluid domains to the same shape so no guessing is needed

@ Schwarz-Christoffel conformal mappings can be used to do this for 2D
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e Annular sampling versus Cartesian sampling




Imperial College
London

Dataset — Geometries

@ 80 random geometries; 64 training and 16 test
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@ Re = 300 simulations past each geometry using PyFR (implicit LES, artificial
compressibility)




Dataset — Sensor setup
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Tasks

e Spatial multigeometry flow reconstruction (SMGFR) — sensor measurements
and ground truth fields are contemporaneous

e Spatio-temporal MGFR (STMGFR) — Ground truth fields are in the future
relative to the sensor measurements
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Models — Spatial task

@ Evaluated various model architectures, one based on the UNet architecture
performed best
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Models — Spatio-temporal task

@ Trained using the outputs of the spatial models as inputs. Choose some temporal
gap of k timesteps between the input and output snapshots.

@ Can be trained for different temporal gaps without re-training the spatial model.

@ Set k = 0 to use this model as a denoising autoencoder

Current sensors | Spatial model Current field Temporal model Future field
St,i ’ (e.g. SD-UNet) )?t,i (FNO) )?t+k,"
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Models — Spatio-temporal task

@ Combine the spatial model with a further model to predict future snapshots from

current reconstructed snapshots
@ Chosen architecture is a six-layer 64-channel FNO model
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Results — Spatial task — Velocit?/ and Pressure
o

@ Annular sampling enables pressure and velocity components to be estimated with
mean absolute percentage errors (MAPE) below 3% and 10%, respectively

p v
MAE MAPE | MAE MAPE | MAE MAPE

Annular sampling  0.0118 2.43% | 0.0264 8.26% | 0.0122 9.40%
Cartesian sampling  0.0133  3.32% | 0.0332 11.56% | 0.0164 15.61%

@ Pressure prediction example; target (left), prediction (middle), % error (right):
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Results — Spatial task — Velocity and Pressure

@ u-velocity prediction example

@ v-velocity prediction example
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Results — Spatial task — Velocity and Pressure

@ The pressure and velocity reconstructions can be used to estimate lift and drag via
the body force method

@ Comparison of the two sampling strategies:

] Cp
MAE MAPE MAE  MAPE

Annular sampling  0.0253 4.97% | 0.0214 8.57%
Cartesian sampling  0.0966 28.18% | 0.0684 29.67%

@ Annulus sampling removes the need to interpolate variables to object boundaries,
greatly boosting accuracy.

@ Enables force estimation at Re = 300 with MAPE levels comparable to those
reported for laminar flow by Chen et al. at Re = 10
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Results — Spatial task — Velocity and Pressure

@ Predicted lift and drag coefficient time evolution for a randomly chosen validation
geometry, using Annular sampling
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Results — Spatial task — Vorticity

@ The reconstruction relationship between velocity/pressure sensor inputs and full
vorticity fields is more complicated compared to pressure/velocity full fields

@ Hence, percentage error levels are higher:

SD SD-UNet
MAPE HVM MAPE HVM

Annular sampling  44.29% 34.28% | 39.92% 31.37%
Cartesian sampling  59.88%  46.14% | 47.64% 39.88%

e High Vorticity MAPE (HVM): MAPE filtered to not include gridpoints that
have ground truth magnitudes under 1% of the peak vorticity magnitude
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Results — Spatial task — Vorticity
Ground truths Predictions
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Results — Spatial task — Vorticity

@ The high error levels can be brought down by applying the time-marching FNO
model with a k = 0 temporal gap, bringing errors down by about =~ 10%:

SD-UNet+FNO SD-UNet
MAPE HVM MAPE HVM

Annular sampling  28.89% 17.86%‘39.92% 31.37%

@ In this configuration, the FNO model acts like a denoising autoencoder
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Results — Spatio-temporal task — Vorticity

@ Input the current full vorticity field into the FNO model and predict the full
vorticity field k timesteps in the future

@ Future vorticity fields can be predicted with minimal percentage error penalties

0 (0.0) 20 (0.667) 80 (2.667)

* 1
k(A7) MAPE HVM MAPE HVM MAPE HVM

From ground truth  19.76% 10.75% | 23.40% 11.75% | 29.58% 19.53%
From reconstruction 28.89% 17.86% | 31.02% 17.86% | 31.88% 21.97%

L7% = TUoo /Lm, where L, is the length of the side of the box where Bezier curve control points are

randomly chosen in
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Results — Spatio-temporal task — Vorticity

Ground truths Predictions % Errors
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Results — Spatio-temporal task — Vorticity

Ground truths Predictions % Errors
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Conclusion

@ Flow reconstruction around unseen geometries with errors < 3%, < 10% and
< 30% of p, u and w

Predict lift and drag with error levels on the order of 5% and 9% respectively

Estimate future vorticity fields in the future from current sensor measurements
Future work:

e 3D
e more advanced NN architectures
e predictions at different Re without retraining
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Cite our work!

e Ali Girayhan Ozbay and Sylvain Laizet, " Deep learning fluid flow reconstruction
around arbitrary two-dimensional objects from sparse sensors using conformal
mappings”, AIP Advances 12, 045126 (2022) https://doi.org/10.1063/5.0087488

@ First result when you Google " Deep learning flow reconstruction”

o Code repositories:

o Data generation and training: https://github.com/aligirayhanozbay/flow_prediction
o Conformal mapping software: https://github.com/aligirayhanozbay/pydscpack



