
Towards automatic code generation
for high-order compact schemes

Dr Jianping Meng
Computational Engineering Group

Computational Science and Engineering
Scientific Computing Department STFC Daresbury Laboratory

Motivation
Separation of concerns (and domain specific language approach)
The algorithms that encapsulate the mathematics and physics of the problem are separated
from the computational science of their implementation.
Exascale computer -

Motivation
Separation of concerns (and domain specific language approach)
The algorithms that encapsulate the mathematics and physics of the problem are separated
from the computational science of their implementation.
Complex mathematics?

OpenSBLI: a domain-specific langauge type modelling framework that is capable of
expanding a set of differential equations written in Einstein notation, and automatically
generating C/C++ code that performs the finite difference approximation to obtain a
solution. Currently with the OP-DSL backend.

Compact scheme
From computational point of view, it is a type of relatively complicated finite-difference
scheme, which requires:
• Prepare matrix (a,b,c,d)
• Linear solver
• Extra treatments for (periodic) boundary condition

ops_par_loop(preprocessX, "preprocessX", compact3d, 3, iterRange,
ops_arg_dat(u, 1, S3D_7PT, "double", OPS_READ),
ops_arg_dat(a, 1, S3D_000, "double", OPS_WRITE),
ops_arg_dat(b, 1, S3D_000, "double", OPS_WRITE),
ops_arg_dat(c, 1, S3D_000, "double", OPS_WRITE),

ops_arg_dat(d, 1, S3D_000, "double", OPS_WRITE),
ops_arg_idx());
ops_tridMultiDimBatch_Inc(3, 0, size, a, b, c, d, ux, trid_ctx);

• It is better not to repeat all these sentence and arguments for each terms

Using the OP-DSL, we need following lines

• Combine the power of Python and a little more abstraction from C/C++ and OPS

In this case, we propose a general C/C++ function template to make codes more

concise. Otherswise, it will leads to much longer codes than typical explicit schemes

• No interference on existing codes following OOP principle

The existing applications should be run without problem

• Consider future requirements while implementing using simple problems

Design and implementation

Linear solver class

For generating code to initialise, finalise and call linear algebra solver

Compact class

To use the compact scheme to discrete derivatives.

OPSCCompact class

To geneate the framework of the main source file

Implicit kernel, CR, and algorithm

One-dimensional wave equation

Generated code successfully
run on both GPU and CPU

Taylor - Green vortex

• Lead to shorter source code
• The source code looks correct by

comparing with those of the central
differencing schemes

• The codes compiles without problem.
• Further numerical tests are under way

(after we investigate the proper periodic
boundary or other alternatives.)

Main kernel
Central 651 727
Compact 798 461

void CompactDifference4thX1st(ops_block& block, ops_dat& u, ops_dat& a,
ops_dat& b, ops_dat& c, ops_dat& d, ops_dat& ux,
ops_tridsolver_params* trid, double delta,
int layer = 0) {

int* size{u->size};
int* dm{u->d_m};
int* dp{u->d_p};
int spaceDim{block->dims};
int* tridSize{new int[spaceDim]};
for (int i = 0; i < spaceDim; i++) {

tridSize[i] = size[i] - dp[i] + dm[i];
};
int* iterRange{new int[2 * spaceDim]};
for (int i = 0; i < spaceDim; i++) {

iterRange[2 * i] = -layer;
iterRange[2 * i + 1] = size[0] + layer;

};
ops_par_loop(PreprocessX4thCompact1st, "preprocessX", block, 1, iterRange,

ops_arg_dat(u, 1, neighbor_stencil, "double", OPS_READ),
ops_arg_dat(a, 1, local_stencil, "double", OPS_WRITE),
ops_arg_dat(b, 1, local_stencil, "double", OPS_WRITE),
ops_arg_dat(c, 1, local_stencil, "double", OPS_WRITE),
ops_arg_dat(d, 1, local_stencil, "double", OPS_WRITE),
ops_arg_dat(ux, 1, local_stencil, "double", OPS_WRITE),
ops_arg_idx(), ops_arg_gbl(&size[0], 1, "int", OPS_READ),
ops_arg_gbl(&layer, 1, "int", OPS_READ),
ops_arg_gbl(&delta, 1, "double", OPS_READ));

ops_tridMultiDimBatch_Inc(spaceDim, 0, tridSize, a, b, c, d, ux, trid);
delete[] iterRange;
delete[] tridSize;

}

for (int stage = 0; stage <= 2; stage++) {
CompactDifference4thX1st(opensbliblock00, phi_B0, a, b, c, d, wk0_B0,

trid_at_opensbliblock000, Delta0block0, 0);
int iteration_range_4_block0[] = {0, block0np0};
ops_par_loop(opensbliblock00Kernel004, "Convective residual ",

opensbliblock00, 1, iteration_range_4_block0,
ops_arg_dat(wk0_B0, 1, stencil_0_00, "double", OPS_READ),
ops_arg_dat(Residual_TimeDer_phi_B0_t_B0, 1, stencil_0_00,

"double", OPS_WRITE));

int iteration_range_9_block0[] = {0, block0np0};
ops_par_loop(

opensbliblock00Kernel009, "Sub stage advancement", opensbliblock00, 1,
iteration_range_9_block0,
ops_arg_dat(Residual_TimeDer_phi_B0_t_B0, 1, stencil_0_00, "double",

OPS_READ),
ops_arg_dat(phi_RKold_B0, 1, stencil_0_00, "double", OPS_READ),
ops_arg_dat(phi_B0, 1, stencil_0_00, "double", OPS_WRITE),
ops_arg_gbl(&rknew[stage], 1, "double", OPS_READ));

int iteration_range_8_block0[] = {0, block0np0};
ops_par_loop(opensbliblock00Kernel008, "Temporal solution advancement",

opensbliblock00, 1, iteration_range_8_block0,
ops_arg_dat(Residual_TimeDer_phi_B0_t_B0, 1, stencil_0_00,

"double", OPS_READ),
ops_arg_dat(phi_RKold_B0, 1, stencil_0_00, "double", OPS_RW),
ops_arg_gbl(&rkold[stage], 1, "double", OPS_READ));

ops_halo_transfer(exchange5_block0);
ops_halo_transfer(exchange6_block0);

}

Slice capability for OPS and OpenSBLI

Motivation
• Always writing out 3D data is very expensive
• Often we would like to focus at a few planes
• Users from NASA, JAXA… requested
Desired capabilities
• Writing out a plane (say I=20)
• Writing out arbitrary selection of data
• Organised the slices in a specified structure

HDF5 files can be directly imported into Matlab,
Python (h5py), Julia(HDF5), TecPlot, Visit and Paraview
with a little more works (or convert to VTK)

Slice capability for OPS and OpenSBLI
void ops_write_plane_hdf5(const ops_dat dat, const int cross_section_dir,

const int pos, char const *file_name,
const char *data_name);

Writ data of a plane specified by cross_section_dir, pos
data_name=“block/time/rho” – HDF5 convention for making data structure where data are stored under block
and time group
data_name=“block_time_rho” – data stored at the root
Data dimension will be reduced by one

void ops_write_data_slab_hdf5(const ops_dat dat, const int *range,
const char *file_name, const char *data_name);

Write data of an arbitrary slab specified by the range array

void ops_write_plane_group_hdf5(
const std::vector<std::pair<int, int>> &planes, const std::string &key,
const std::vector<std::vector<ops_dat>> &data_list);

ops_write_plane_group_hdf5({{1, 16}, {0, 1}, {2, 16}}, "2",
{{u, v}, {u, v}, {u, v}});

Slice capability for OPS and OpenSBLI

4 nodes with 16 GPUS (NVIDIA V100)
First: 0.78
Second: 0.52

128 256 512

1 8.94 14.49 21.87

2 9.6 17.97 20.56

3 12.06 14.74 21.29

avg 10.2 15.73 21.24

128 256 512

1 2.7 5.42 3.63

2 2.9 3.23 4.17

3 2.68 3.78 7.78

avg 2.76 4.14 5.19

Bede2
Two-block mini-application
5123

Block 1: slice3Du
Block 2: slice3Dv

Archer2
Two-block mini-application
10243

Block 1: slice3Du
Block 2: slice3Dv

• Lead to shorter source code for the TGV case
• The source code for the TGV case looks correct by comparing with the central

differencing one.
• The implementation of slice HDF5 output
• Testing more cases and looking at performance including the ARM system

Concluding remarks

